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Oxides & media
Background information



Soils, streams and rock chips in exploration

• Stream Sediments: identify broad geochemical anomalies 
and provide initial data for large-scale area coverage.

• Soils: refine target areas by detecting localized geochemical 
anomalies and element dispersion patterns.

• Rock Chips: confirm mineralization directly from the source, 
offering high-confidence data for ore potential.

• Benefits:
○ Map Anomalies: each method helps pinpoint 

geochemical anomalies and refine exploration 
targets.

○ Optimize Drilling: guides where to drill and 
conduct geophysical surveys, improving exploration 
efficiency.

○ Reduce Risk: combined data minimize drilling in 
non-productive areas, saving costs and resources.

Soil and salt sampling in faults, Atacama 
Desert, Chile.



Stream sediments

• Stream sediments are materials transported by rivers and 
streams. They provide a natural sample of the drainage 
basin upstream and can represent a mix of the bedrock 
and soil geochemistry of a large area.

• Impact:
○ Broad Area Sampling: stream sediments can cover 

large areas efficiently, allowing geochemists to identify 
regions with anomalous metal concentrations that may 
signal mineralization upstream.

○ Pathfinder Elements: they help identify pathfinder 
elements associated with specific ore types, guiding 
exploration to areas with higher potential.

○ Downstream Geochemical Signature: the 
sediments carry downstream signals of mineralization, 
helping to identify the source area of the mineralized 
material.

link



Soils

• Soil samples are taken from the near-surface layer and 
represent the breakdown of underlying bedrock and 
transported materials.

• Impact:
○ Targeted Anomalies: Soil sampling is useful for 

delineating more localized geochemical 
anomalies, particularly in areas where outcrops 
are scarce or hidden by vegetation or 
weathering.

○ Direct Reflection of Underlying Geology: 
soil geochemistry may reflect the geochemical 
signature of underlying rocks, making it effective 
for detecting buried ore bodies or alteration 
zones.

○ Geochemical Dispersion Halos: soils can 
capture the geochemical dispersion halos that 
often extend beyond the mineralized zones, 
allowing for identification of broader target areas.

link



Rock chips

• Rock chips are small fragments or chunks of rock collected 
directly from outcrops or from subsurface material during drilling 
or trenching.

• Impact:
○ Direct Source Sampling: rock chips provide a direct sample 

from the bedrock or mineralized zone, offering high-confidence 
data on the geochemistry of the source material.

○ Lithogeochemistry: analysis of rock chips gives a clear 
understanding of the chemical composition of the lithology and 
can help identify specific types of mineralization or alteration 
zones.

○ Pinpointing Mineralized Zones: while soils and stream 
sediments may indicate an anomaly, rock chips provide more 
precise information about the grade and extent of 
mineralization at a particular site.

○ Alteration Signatures: rock chips can also reveal the 
geochemical signatures of alteration zones, which are often 
associated with ore deposits, helping to narrow down 
exploration targets.

Earth Science Australia



Examples of ore bodies identified with geochemistry

• Hemlo Gold Deposit (Canada)
○ Deposit Type: Orogenic Gold
○ Sampling Method: Stream Sediments, Soils, and 

Rock Chips
• Red Chris Copper-Gold Deposit (Canada)

○ Deposit Type: Porphyry Copper-Gold
○ Sampling Method: Stream Sediments, Soils, and 

Rock Chips
• Voisey’s Bay Nickel Deposit (Canada)

○ Deposit Type: Nickel-Copper-Cobalt Sulfide
○ Sampling Method: Stream Sediments, Soils, and 

Rock Chips Voisey’s Bay, Canada



Challenges of using these media

• Components of the sample medium have the 
ability to adsorb or otherwise trap mobile ions:
○ Organic matter (humic and fulvic acids, 

charcoal adsorption, chelation, 
complexation)

○ Fe and Mn hydroxides (adsorption, 
co-precipitation)

○ Clays (adsorption)
○ Carbonates (adsorption, co-precipitation, 

neutralization)
○ Silica (gels)

• The above host the exogenic signal (i.e., the 
geochemical signal of introduced ions or 
elements), which is very useful for exploration. 



In the secondary environment, metals move

McQueen, 2006

Ferric and Al-hydroxide precipitation where acidic and 
neutral streams mix. Copper, Zn, Co, Ni, Mn, Ca, Mg, etc. 
are adsorbed onto Fe-hydroxide precipitates. 



Metal scavenging: adsorption

• Adsorption is the adhesion of metal ions to a 
surface.

• Fe and Mn hydroxides have high adsorption 
capacities.

• pH controls the absorption capacity of clays:
○ At acid pH, H+ ions are preferentially 

adsorbed or exchanged in place of 
metals.

○ At neutral to alkaline pH, clays can 
absorb high concentrations of metals. 

link



Metal scavenging: co-precipitation and adsorption

• Fe2+ and Mn2+ can remain in solution under strongly 
acidic or reducing conditions. 

• Under oxidizing surface conditions, they precipitate 
as hydroxides. 

• Precipitation can occur where reduced groundwater 
emerges at surface. 

• Other elements may be incorporated into these 
hydroxides by co-precipitation. 

• Mobile elements such as Zn and Cd can be removed 
from solution at pH below their pH of hydrolysis. 

• Mo and As tend to be adsorbed onto Fe hydroxide 
precipitates; Co, Ni, and Cd on Mn hydroxides. 

Tsuchiya et al., 2020



How I was taught to deal with the effects of scavenging

• To interpret the geochemical data correctly, it is 
important to differentiate between the 
concentration of the element that is naturally 
present due to the geologic background and the 
concentration of the element that is absorbed 
onto Fe-oxides due to scavenging. 

• A basic normalization ratio doesn’t fully account 
for the natural geochemical relationship 
between the element and Fe so for improved 
accuracy residuals are calculated to account 
for the expected relationship between the 
element and Fe under natural conditions. 

Benn, 2014



How I was taught to deal with the effects of scavenging

• First a regression line is calculated between the 
concentrations of Fe and the other element 
across all samples. This regression line 
represents the expected concentration of the 
element based on the amount of Fe, assuming 
a natural (non-scavenging) relationship. 

• A residual is the difference between the 
observed concentration of the element and the 
vale predicted by the regression model.

Benn, 2014



How I was taught to deal with the effects of scavenging

• A positive residual indicates that the element 
is present in higher-than-expected amounts, 
which may suggest an external input of the 
element beyond the influence of Fe-oxide 
scavenging

• A negative residual suggests that the element 
is present in lower-than-expected amounts, 
potentially indicating depletion due to Fe-oxide 
scavenging. 

Benn, 2014



How I was taught to deal with the effects of scavenging

• A positive residual indicates that the element 
is present in higher-than-expected amounts, 
which may suggest an external input of the 
element beyond the influence of Fe-oxide 
scavenging

• A negative residual suggests that the element 
is present in lower-than-expected amounts, 
potentially indicating depletion due to Fe-oxide 
scavenging. 

• Residuals can help distinguish areas where the 
element is being enriched or depleted 
independently of the Fe-oxide effect. 

Benn, 2014



Control by Fe concentration in soil

After normalizing for 
Fe, the pattern for As 
(residual values) 
becomes much clearer 
(Benn, 2014). 

1 km



The Code-Along



Spatial autocorrelation
…excuse me, what now? 



Spatial autocorrelation, defined 

• Spatial autocorrelation refers to the concept 
in geography and spatial statistics where 
the spatial distribution of a variable 
demonstrates correlation based on its 
location. 

• In simpler terms, it examines whether the 
occurrence of an attribute at one location is 
similar or different to the occurrence of the 
same attribute at nearby locations.

• In geochemistry, spatial autocorrelation can 
help in understanding the spatial 
distribution of certain elements in soil or 
rock samples.

link



Spatial autocorrelation, defined 

• There are two types of spatial autocorrelation:
○ Positive Spatial Autocorrelation: This 

occurs when similar values cluster together in 
space. For example, areas with high mineral 
content may be located near other high 
mineral content areas, and vice versa for low 
values.

○ Negative Spatial Autocorrelation: This 
happens when dissimilar values are located 
near each other. For example, high values 
may be surrounded by low values, creating a 
sort of checkerboard pattern.

• Spatial autocorrelation can be quantified using 
measures like Moran's I, Geary's C, or Ripley’s K-
function to help identify patterns and make 
predictions based on spatial relationships.

Campbell and Shin, 2011



Is there correlation or is this effect due to spatial autocorrelation?

Plan:
1. Load necessary packages.
2. Visualize the data to identify potential 

spatial patterns.
3. Prepare spatial data and convert it into 

a spatial object.
4. Create a spatial weights matrix using 

a distance-based or neighbor-based 
approach.

5. Calculate Moran’s I to assess global 
spatial autocorrelation.

6. Use Local Moran’s I to explore localized 
clusters or outliers.



Visualizing spatial distribution: Au



Visualizing spatial distribution: Cu



Interpreting the results

Moran’s 1 values:
• Close to +1 indicates strong positive spatial 

autocorrelation, i.e., similar values cluster together 
in space.

• Near 0 suggests no spatial autocorrelation, i.e., 
the values are randomly distributed in space.

• Close to -1 indicates negative spatial 
autocorrelation, i.e., dissimilar values are adjacent.

Significance
• If the p-value > 0.05, the Moran’s I values are not 

significant and the variable does not show 
significant spatial autocorrelation.  

p-valueObservedVariable
0.0160.022Moran_Au
0.7280.005Moran_Cu



How do we interpret this plot?

• Looking at the bivariate plot, it shows that 
while there is a general trend of increasing 
gold with increasing copper, the 
relationship is not perfectly linear, as there 
is significant scatter around the regression 
line.



How do we interpret this plot & Moran’s I?

• Moran's I = 0.01 suggests very weak 
positive spatial autocorrelation. The 
Moran’s I value ranges from -1 (indicating 
strong negative spatial autocorrelation) to 
+1 (indicating strong positive spatial 
autocorrelation). 

• A value near 0, such as 0.01, implies that 
the spatial arrangement of Cu and Au 
values is close to random.



How do we interpret this plot & Moran’s I?

• Here, any spatial clustering or pattern in 
the distribution of Cu and Au is negligible.

• The correlation observed between them is 
likely due to their inherent relationship 
between their concentrations rather than 
spatial autocorrelation.



Using data science to 
identify whether there are 
Fe- and/or Mn-oxides 
affecting Au concentration
Data science for the seemingly mundane 



Our code-along

• In the code, we use SHAP values (Shapley Additive exPlanations) in conjunction with an XGBoost
model to explore and quantify the influence of certain elements, specifically Fe and Mn (think their 
oxides), on the concentrations of Cu (copper) or Au (gold). 

• This approach allows us to investigate whether there is scavenging of Au (or any other element) by Fe 
or Mn oxides in the geochemical dataset.

• By using this SHAP-based approach with XGBoost, we are able to quantify and visualize the contribution 
of Fe and Mn to the prediction of Au concentrations, which helps determine whether Fe- or Mn-oxide 
scavenging is playing a role. 

• Look for strong positive SHAP values or clear dependencies of Au on Fe/Mn as evidence of such 
scavenging.

• In the following slides we are going to break down the key steps and how they relate to detecting Fe-
or Mn-oxide scavenging of Au. 



Data preparation: subsetting

• First, we prepare a subset of the geochemical data, selecting the variables that we want to include in 
the model. 

• Elements like Fe, Mn, Cu, and Au, as well as other potentially relevant elements (V, Zn, Ba, Cr, etc.).



Data preparation: preprocessing using bestNormalize

• Handles Skewed Data: Geochemical data (e.g., element concentrations) are often skewed, and 
normalization helps make distributions more symmetric for analysis.

• Improves Model Performance: Many statistical models assume normality. Normalization enhances 
model accuracy by making data more suitable for these algorithms.

• Automates Best Method Selection: Automatically chooses the best normalization technique (e.g., 
log, Yeo-Johnson, Box-Cox) based on each variable's distribution.

• Mitigates Outliers: Compresses the scale of extreme values, reducing the impact of outliers.
• Ensures Comparability: Makes variables with different units or scales comparable in analysis.
• Meets Statistical Assumptions: Helps fulfill the normality and homogeneity requirements for 

statistical tests and models.



Modeling to predict element concentrations

• We need to train an XGBoost model to predict the log-transformed Au concentrations based on the 
other geochemical variables in the subset.

• This model allows us to quantify the contribution of different variables, like Fe and Mn, to 
the prediction of Au concentrations.

• Later, we can replace Au_ppb with other elements in the label to analyze the influence of Fe and Mn on 
them instead of Au.



Understanding partial dependence with SHAP values calculation

• SHAP values are calculated to explain the contribution of each feature (e.g., Fe_pct, Mn_ppm) to the 
predictions made by the XGBoost model.

• SHAP values provide insights into how much each variable contributes to predicting log(Au_ppb). 
• This helps in understanding the partial dependence of Au on Fe, Mn, and other elements.



SHAP – Impact on model output

• The SHAP summary plot 
shows how each feature 
contributes to the prediction 
across all samples in the 
dataset.

• You can observe if Fe_pct or 
Mn_ppm are important 
features, which would 
indicate that they have a 
significant effect on Au 
concentrations.



SHAP – Impact on model output

• Key Findings:
○ Fe: has a significant positive impact on predicting gold (Au) 

concentrations, supporting the hypothesis of Fe-oxide 
scavenging for Au. Higher Fe values correlate with higher Au 
predictions.

○ Mn: shows a weaker influence, suggesting that Mn-oxide 
scavenging may occur but is less impactful compared to Fe.

○ Pb: is the most influential feature, possibly indicating a 
geochemical association between lead and gold, suggesting 
shared mineralization processes.

○ Other elements like Cu, Na, and As have moderate impacts but 
contribute less to Au predictions.

• Conclusion: the strong influence of Fe_pct highlights Fe-
oxide scavenging as a key process controlling gold 
concentration in the dataset, while Mn-oxide scavenging 
plays a less important role.



Partial dependence plots for Fe and Mn

• These plots are particularly important for assessing 
oxide scavenging.

• If there is a clear dependence of Au on Fe or Mn, 
this could suggest that these oxides are scavenging 
or associating with the element (Au).

• The shape and spread of the dependence plot shows 
how changes in Fe or Mn concentration affect the 
predicted Au concentration.

• In these plots we are looking for trends where 
higher Fe or Mn values correspond to higher Au 
concentrations. This would be evidence of Fe or Mn-
oxide scavenging, as these oxides tend to adsorb 
trace metals, leading to higher concentrations where 
Fe or Mn is abundant.



Partial dependence plot interpretation 

• Fe_pct
○ Positive SHAP Values: SHAP values 

increase as Fe_pct increases, especially for 
Fe_pct values above 10%. This indicates that 
higher Fe concentrations have a positive 
contribution to the prediction of higher 
gold concentrations.

○ Curved Trend: The relationship is 
nonlinear, with a marked increase in the 
SHAP value at Fe_pct > 20%, suggesting 
that Fe-oxide scavenging becomes more 
pronounced at higher Fe levels. This 
supports the hypothesis that Fe-oxides play a 
key role in concentrating gold.



Partial dependence plot interpretation 

• Mn_ppm
○ Weaker Influence: the SHAP values for 

Mn_ppm decrease slightly as Mn 
concentration increases, especially for 
concentrations above 2000 ppm. This 
suggests that higher Mn concentrations may 
have a small negative or neutral impact
on Au concentrations.

○ Negative Contribution: the generally 
lower SHAP values for Mn indicate that Mn-
oxide scavenging has less of an effect on 
Au than Fe-oxide scavenging.



Partial dependence plot interpretation: summary 

• The Fe_pct plot shows a clear, positive relationship 
between Fe concentration and Au, reinforcing the 
idea of Fe-oxide scavenging for Au.

• The Mn_ppm plot shows a more neutral to negative 
relationship, suggesting that Mn-oxide scavenging
is either less significant or potentially inhibitive to Au 
concentration compared to Fe oxides.

• In the context of this study, these plots visually 
confirm that Fe-oxide scavenging is likely a key 
process influencing Au distribution, while Mn-oxide 
scavenging plays a lesser role.



Force or waterfall plots

• These plots shows the SHAP values for 
each feature, illustrating how each feature 
contributes to the prediction of Au for 
individual samples.

• They visualize the cumulative contribution 
of Fe, Mn, and other elements to the 
predicted Au concentration for specific data 
points, providing insight into how much Fe 
or Mn affects the prediction.



Force or waterfall plots: interpretation

• Pb_ppm: strong positive contribution in many samples (light blue). 
High lead concentrations are key drivers for predicting higher gold 
concentrations.

• Fe_pct: consistent positive impact across most samples (dark blue), 
suggesting Fe-oxide scavenging of gold. Some variability with 
negative contributions in certain samples.

• Cu_ppm: Positive but smaller contribution compared to Pb and Fe 
(green). Likely involved in mineralization (can also represent 
different systems / erosional level); there is a less pronounced 
effect.

• Na_pct: modest contribution (light green), generally neutral or 
slightly negative.

• As_ppm: variable influence (pink), with both positive and negative 
contributions, indicating its role may depend on local geochemistry.

• Rest of Variables: (Red) these elements contribute smaller, more 
varied effects.

• Pb_ppm and Fe_pct are the most influential features, 
supporting the hypothesis that Pb and Fe (especially Fe-oxide 
scavenging) are key factors in controlling gold distribution in this 
dataset.



Grouping SHAP contributions

• This step groups samples based 
on SHAP values, showing how 
different combinations of 
features (such as high Fe or Mn 
concentrations) influence the 
predictions.

• Samples with higher Fe or Mn 
SHAP values would likely show a 
strong dependence of Au on 
these oxides.



Grouping SHAP contributions: interpretation

• Fe_pct: consistently contributes positively across multiple 
sample groups, reinforcing the role of Fe-oxide scavenging in 
concentrating gold.

• Pb_ppm: major positive contributor in certain groups, indicating a 
strong geochemical association between lead and gold.

• Cu_ppm and Na_pct: show smaller, more variable contributions, 
with copper sometimes positively impacting predictions.

• As_ppm: typically shows a negative contribution, suggesting an 
inverse relationship with gold concentrations in certain samples.

• Group variability: contributions change across different sample 
groups, reflecting geological heterogeneity in the dataset.

• Conclusion: Fe and Pb are key drivers in predicting higher gold 
concentrations, with Fe-oxide scavenging potentially being a 
dominant process.



Let’s look at our results 
spatially
Because geochemistry is spatial. 



Spatial Distribution of SHAP-Derived Groups

• Visualization: Plot the spatial distribution of the 10 groups derived from SHAP force plots, using 
geographic coordinates to understand the whether there is any spatial clustering.

• Spatial Patterns:
○ Fe-oxide scavenging: check if groups with strong Fe-oxide associations (from SHAP force 

plots) are clustered in Fe-rich zones.
○ Mn-oxide associations: similarly, evaluate if groups with Mn-oxide influence correspond to Mn-

rich areas.
• Analysis:

○ Overlay geochemical data (Fe, Mn, Au, etc.) on the map to investigate potential elemental 
correlations with groups.

○ Use Moran’s I to quantify spatial autocorrelation of groups and identify significant clustering 
patterns.

• Conclusion: Mapping the groups spatially helps visualize elemental associations (e.g., Fe-oxide 
scavenging) and determine spatial clustering of mineralization processes.



Plotting groups spatially

• By mapping these groups 
based on their spatial 
coordinates, we can 
understand how the groupings 
are distributed across the 
geographic area. 

• This may help reveal any 
spatial patterns or clustering.

• Importantly, and in the 
context of this study, we 
should use this spatial map to 
correlate group locations 
with Fe and Mn 
concentrations to confirm if 
Fe-oxide or Mn-oxide 
scavenging is occurring in 
specific regions.



Check for spatial autocorrelation

• To further understand the spatial relationship of 
these groups, you can calculate Moran’s I or 
other spatial autocorrelation metrics on the 
groupings. This will provide a statistical measure of 
whether the groups show significant spatial 
autocorrelation.

• In other words, this will help quantify whether the 
spatial distribution of the groups is random or 
exhibits clustering.

The positive relationship between Cu and Au 
observed in the plot is likely real and not primarily 
influenced by spatial autocorrelation, given the low 
Moran's I value.



Spatial patterns: Fe

• Are clusters enriched in Fe, plotting where there is high 
Fe, or in our interpretation: do Fe-rich areas
correspond with groups showing strong Fe-oxide 
scavenging? 

• Groups 1, 5, 8, 9 with Au > global background. 



Spatial patterns: Mn

• Are clusters enriched in Mn, plotting where there is 
high Mn, or in our interpretation: do Mn-rich areas
correspond with groups showing secondary Mn-oxide 
scavenging? 

• Groups 1, 3, 5, 8, 9 with Au > background. 



Let’s quantify this a bit 
better… 
Residuals



Code Along

• We need to predict the amount of Au that should be present if not for Fe-oxide scavenging. The 
idea is to apply a combination of spatial analysis (to account for spatial autocorrelation) and machine 
learning techniques like SHAP (to quantify the impact of Fe on gold concentration predictions): 
○ Train a model with Fe_pct to predict gold concentrations and capture the influence of Fe-oxide 

scavenging.
○ Train a second model without Fe_pct to predict gold concentrations without the influence of 

Fe.
○ Compare the predictions to quantify how much of the gold concentration is due to Fe-oxide 

scavenging.
○ Analyze spatial autocorrelation in the residuals to ensure that other spatial effects are 

accounted for.
○ Interpret the results to make conclusions about the impact of Fe-oxide scavenging and identify 

any remaining patterns in the gold distribution.



Next steps

• We have already quantified how much Fe_pct contributed to the prediction of Au_ppb in your dataset 
by using SHAP values with from the XGBoost model.
○ This allows the capture of Fe contribution to Au prediction.
○ From this, we can estimate how much of the predicted Au concentration is due to Fe-oxide 

scavenging.
• Now we need to use a model without Fe_pct:

○ To predict the gold concentration if Fe-oxide scavenging were not present, we should 
retrain the model without Fe_pct as a predictor and compare the results to the original 
model.



Train the XGBoost model without Fe_pct

• Train a model that excludes Fe_pct from 
the predictors. This model should predict 
the concentration of gold without the 
influence of Fe-oxide scavenging.



Compare the predictions

• Compare the predictions from the two models:
○ The original model includes the impact of 

Fe-scavenging
○ The new model excludes the impact of 

Fe, providing an estimate of what Au 
concentration would look like without Fe-
oxide scavenging.



Estimate the contribution of Fe-oxide scavenging

• The difference between the predicted Au 
concentrations from the model with 
Fe_pct and the model without Fe_pct
will give an estimate of how much of the 
Au is attributable to Fe-oxide 
scavenging.



Spatial autocorrelation for residuals

• Moran's I statistic: 0.0116 (weak positive spatial 
autocorrelation)

• p-value: 0.1856 (not statistically significant)
• Conclusion: No significant spatial autocorrelation 

in Au concentrations, meaning the observed spatial 
distribution of gold is likely random.



Residual interpretation

Residual Map: Map the residuals from the model 
without Fe to see which areas might have anomalous 
gold concentrations not explained by Fe-oxide 
scavenging.
• Red areas indicate potential regions of Fe-oxide 

scavenging that were not accounted for by the 
model, as the exclusion of Fe_pct led to 
underestimations of gold concentration.

• These regions likely have anomalous gold 
concentrations that are not explained by other 
geochemical variables, making them good 
targets for further investigation.



Let’s finish out this story
Combining our ML with geology



Have we checked the Clarke Values?! 

• In geology and geochemistry, a Clarke value refers to the average 
concentration or abundance of a chemical element in the Earth's 
crust; it is a benchmark for assessing how enriched or depleted an 
element is in geological samples. 

• In exploration, comparing sample concentrations to Clarke values 
helps geologists and geochemists identify potential mineralization 
and guide further investigation.

• For example, if a geochemical sample has 500 ppm copper, and the 
Clarke value for copper is 55 ppm, this indicates a nearly tenfold 
enrichment relative to the Earth's crust average, suggesting a 
potential copper deposit.

• Note, that this should be AOI specific! Know your rocks 

Clarke ValueElement
~27.7%Si
~8.1%Al
~5%Fe
~55ppmCu
~4ppbAu



Have you made your catchment basin map?

• Catchment maps are used to collect stream 
sediment samples for geochemical analysis. 

• A catchment basin is the area where surface 
runoff flows into a river or stream, collecting 
sediments and geochemical signals.

• It’s important to understand catchment basins 
in geochemical anomaly detection that indicate 
upstream mineralization.

Nezhad et al., 2017



Targets to follow-up

• Using a combination of the geology (think 
favorable host rocks and using knowledge of 
the lithologies to determine Clarke values), 
catchment basin map, and your now 
‘residual’ geochemical data you can 
reinterpret your stream sediment data to 
generate follow-up targets. 

• Good luck! 
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